y

Apple Performance Tools

Session 905

y

Apple Performance Tools

Robert Bowdidge
Developer Tools Group, Apple Computer

Why Worry About Performance?

* Performance is a selling point
* Performance problems are (mostly) invisible
*You cannot worry about only your application

« Users will run multiple applications

« Does your application play well with others?

* How do you find performance problems in
your application?

What Will You Learn Today?

* Apple has tools to help
« Tools can measure, identify possible causes
» You will see quick examples of tool use
» Developer CD tools
e Processor performance tools

* See framework talks for specific, concrete advice
* Explore tool use on your own

Causes of Poor Performance

* Excessive use of memory
* Executing too much code
* Waiting for other processes or devices
« Excessive disk accesses
» Excessive drawing or redrawing
* Most problems cause excessive memory use
* Most memory use problems cause swapping

What Tools Exist?

Execution
Memory Use | Behavior Resource Use
Monitor | top top fs_usage
heap Thread Viewer | sc_usage
vmmap QuartzDebug
Analyze | MallocDebug | Sampler Sampler
ObjectAlloc | Shikari OpenGL Profiler

MONSster

Example Program: SimPhysics

* Realistic example, with real inefficiencies
* Originally for Java, quickly ported to Cocoa

*Visualizes electrical fields between particles

Finding Performance Problems

* How do we notice performance problems?
« Measurements!
o Egregious problems
« Expectations about complexity, resource use
« Comparison with past performance

* First step: run top command line tool
« Provides details about system state
« CPU, memory usage of tasks, paging rate
o Watch other relevant processes (Window Server)

* Most relevant: CPU usage, swapping, RPRVT

Check Memory Use Over Time

* How can you identify trends in memory use?
» Call top repeatedly, save results to file

* Command-line scripts can be your friend:
» Permit customized data collection

» Run remotely, run without affecting system
» Run even when window server will not respond

Causes of Excessive Memory Use

* Too much memory allocated
e Large structures scattered across memory
» Unneeded caching of data in memory
» Leaking unneeded memory

* Excessive memory use leads to disk accesses

Finding Causes of Memory Use

* MallocDebug: track source of current allocations
» Relates allocations to call graphs
» Allocations since marked point
« Leak detection
» Pointer problems
* ObjectAlloc: how many objects exist?
» Shows number of objects of each class
e Shows changes over time

MallocDebug:
Where Is Memory Allocated?

* Shows all allocations, grouped by allocation site
e Browse call graph to find uses at site
» Examine contents of memory
» Identify calls responsible for large allocations

* Only shows currently allocated objects

MallocDebug:
Are We Leaking Any Memory?

* What memory are we allocating, then forgetting?

» Leaks waste memory, fatal for long-running
applications

» Force scattering of memory that is used

* MallocDebug can detect unreferenced blocks
e Searches all memory for pointers to blocks
» Unreferenced blocks must be leaked
« Only root of leaked structure shown!

MallocDebug:
Finding Pointer Bugs

* Some memory bugs can be subtle, intermittent

» Referencing freed memory causes
values to change

« Overrunning/underrunning buffers
trash memory

* MallocDebug “helps” detect such problems
» Encourages badly behaved program to crash
« Overwrites freed memory, adds guard words
» Assorted other warning messages to console g

ObjectAlloc:
Analyzing Object Use

* ObjectAlloc shows how many objects exist
» Current, max, total created over life of program
» Shows totals, bar graph, backtraces

* Great for summary, noting trends
» Did you expect 100 FooBars?

* Works for CoreFoundation, ObjC objects
» Backtraces for Objective-C retains and releases
e Also shows malloc blocks

¢

CPU Usage:
What Are The Problems?

* Cause of excessive CPU time

» Executing unnecessary code

» Expensive algorithm

« Unexpected calls to expensive code

» Checking for events by polling, not blocking
* General approach: find most costly routines

« Improvements will make largest difference

Sampler:
Where Are the Hot Spots?

* To improve speed, you need to find costly calls

* Sampler finds what code is executing
« Stops program at interval, records call stack
» Shows only functions seen at sampling time
« Presents call graph with sample counts

* [f you need better detail, check out gprof

Causes of Poor Resource Use

* [nappropriate disk accesses

 Who says files have to be on local machine?
* Multiple processes may divide work

e Drawing partially done by window server

« Waiting for responses

Are We Using the Disk Badly?

* What's happening at startup to keep us slow?
* Maybe we are doing too many disk accesses
« Accesses at wrong time gives slow appearance
* Use fs_usage to watch disk operations
» Must be run as root or with sudo
* Use Sampler to see where we called routines

Are We Drawing Too Much?

* Drawing directly affects performance
 Drawing consumes CPU time, memory
e Idle windows consume memory

» Drawing eventually done by window server
* Use QuartzDebug to understand drawing

» Immediately perceive redundant drawing

» Learn about offscreen windows

How Did We Do
With SimPhysics?

Plain Intensity Arrows | Color Graph
Before 34.0 fps 2.1 fps 2.3 fps
After 19.9 fps 15.2 fps 6.9 fps

* Memory use: 2.5 MB before, 1.1 MB after
* Measured on 600MHz iBook with lots of memory

Other Tools to
Check Out Yourself

* Heap memory use
* heap, leaks , malloc_history
* Process state:
 sample: Command-line version of Sampler
e time: overall time for specific application
* Resources
e io_stat: disk, network performance (Jaguar only)
* sc_usage: which system calls are used?

s

Hints About Tool Use

* All tools work on any binary
« No need to instrument or recompile

* CFM binaries generated by CodeWarrior
» Use inline traceback tables for symbol info
e Set macro to use system’s malloc library

How to Learn More About Tools

* Part of Mac OS X Developer Tools CD
* Documentation for applications
« Graphical tools: documentation in application
« Command-line tools: man pages
e /Developer/Documentation/ReleaseNotes
* [Inside Mac OS X books
» “Inside Mac OS X: Performance”
e “Inside Mac OS X: System Overview”

Conclusion

* Tune your application to make best impression
* Aim to reduce memory use . . in all ways

* Compare performance between builds

* Watch Window Manager and other servers

* Create great applications for Mac OS X

y

Computer Hardware Understanding
Development Tools

“CHUD” Tools

Eric Miller and Nathan Slingerland
Architecture Performance Group, Apple Computer

What Can You Do
With CHUD Tools?

* Finc
* Finc

 out what the hardware is doing
 critical code segments and tune that code

* oo

k at system-wide behavior

What Is the Hardware Doing?

* Macintosh hardware has built-in Performance
Monitor Counters (PMCs)

* Count “performance events”
 Instructions 31 | Memory

gontrolier

e Cache misses 3
« Execution stalls ﬂ: EVICS
e Jse CHUD tools to ask the

PMCs what is going on

* ’MONster

* Configure Performance Monitor Counters
* Collect PMC data based on:
» Hotkey, timed intervals, or event counts
* Compute performance metrics from PMC data
« Memory bandwidth (bytes/sec)
e Cycles per instruction (CPI)
» Define your own metrics
*View results in tabular or chart form

MONster

O O MOMNster

f Results | Processor(s) | Memory Controller | Display Options | Shortcuts | Charts | OS Perf Counters

Settings Index PlsTimebase Plepmc 1 Plepmc 2 Plepmc 3 Plepmc 4 Pleprmg
Processor 1: 800 MHz PPC 7455, 133 | Run - 1 Thl: CPU 65-FP Store 68-FF Issue 14-FPU Z-Instr Wl
P1 - Timebase results (CPU C\'FCIES intr 39,993,333 8,648 43,3fl 19,2?9 2,416,591
PMC 1: 65 - FP Store complete in intr 80,001,032 1,562 1,291 2,909,513
PMC 2: B0 - FP Issue Stalls intr 79,999, 496 258 319 192,956
PMC 3 14 - FPU Instructions intr 83,333,643 lE!IEH'JI 5 3 ?2,241 lllggllgg
PMC 4: 2 - Instr Completed intr 80,002,904 619,631 7 2,329,228 23,412,522
PMC5: 1 - CPU Cycles intr 80,001,416 1,336,234 5 7 7,453,299 35,660,325
PMC 6: 0 - Nothing intr 80,000,336 1,497,233 9,479,089 7,792,538 36,417,405
Skisiteut: E:i- Floating Point (FPS) 80,002, 256 1,616,885 31,990,027 #,476,654 35,497,441
1 _' %FP Stores 80,007,176 1,742,208 32,979,880 #,759,926 35,761,736
2 ;ﬁ Stall ’;PI i intr 80,001,176 1,754,914 32,792,105 #,697,125 35,310,301
il iyl S intr 11: 79,999,952 1,771,664 33,455,891 8,887,906 35,051,064
3 - %FP Inst
4 B EPI s intr : 79,999 784 1,800,159 31,152,111 8,247,803 35,742,403
& intr : 80,002,784 1,917,692 32,977,918 8,741,215 34,900,043
intr : 80,001,584 1,864,575 32,267,891 #,543 412 34,537,964
intr : 20,000,096 1,886,803 33,928,713 #,993 722 34,723,267
intr : 80,003,912 1,899,529 31,956,000 8,445 323 34,295,527
intr 17: 79,997 960 1,811,505 32,181,704 £,523,318%8 35,351,127
intr : 80,000, 384 1,880,527 33,696,399 #,944 602 34,553,191
intr : 80,012,145 2,865,416 33,283,377 #,814, 269 34,921,133
intr - 80,003,936 1,912,365 33,685,158 #,906,458 34,625,771
intr : 80,001,608 1,878,899 33,777,814 #,961,010 34 688,871
intr : 80,000,096 1,864, 357 31,883,797 8,438,162 35,220,240
intr : 80,003,768 1,905,124 33,837,796 #,972,523 34,657,807 &a,
intr : 80,002,448 1,899,314 33,213,596 &,798,361 34,320,851 &a,
intr : 80,002,184 1,903,712 34,142,413 9,062,173 34,768,154 &, -
L]

4k

intr
intr

WL W R W

Draw Chart Deselect Results

MONster

f Results] Processor(s) | Memory Controller | Display Options | Shortcuts | Charts | OS Perf Counters

MOMster

e

Settings spmc 5 Plspmc & SCeres 1
ssor 1: 800 MHz PPC 7455, U B-Nothing: ¢FF e ®FP
ults (CPU € ; 27

14 - FPU Instruction:
2 - Instr Completed

Shortcu

Start Draw Chart

MONster

Results | Processor(s) | Memory Controller | Display Options

MOMster

Start

S h lkarl shi-ka-ri (sh-kaf, -kr) n. pl. shi-ka-ris, a big game
hunter; a professional hunter or guide

* Sample what is running on the system
« Use event counts or timed intervals
» System wide, process, or thread scope
* Relate performance events to your source code
« Performance “hot spots”
« Annotated disassembly
* Performance event histograms

Shikari Demo

868 1™ Shikari - Flurry
500 of 500 process samples {100.0%) / 501 1000 total samples (50.0%)
%Samples %iLl Misses %dl1 Total Misses %L2 Misses %L3 Misses Symbol Name Library Mame
41, 22.4% 18. 3% 19. 7% 21.7% sqrt libSystem.B.dylib
30. 23.0% 28, 3% 20 . 8% 21.9% UpdateSmoke_ScalarBase Flurry

2. 4% 11.5% 10.4% 9. 0% DrawSmoke_Scalar Flurry

7 Rw A R L £ Error_message Flurry
a 7 Memory - Flurry [0x00003d80 - 0x00004658] (User)

gldFinish GeForce3dGLDriver

Px13621680 ?

GxB276478 GLEngine
FastDistancelZD Flurry
UpdateParticle Flurry
Dx02077cdd GLEngine

GxBZB7becd GLEngine

DxB207d73c GLEngine

DxD2076478 GLEngine

Qx@2077cec GLEngine
getNextObjectForIterator__C5 mach_kernel
Ax@2877cdc

DxD207d704

savefFP

Ox020bed0q
ipc_right_copyin_check mach_kernel
pthread_mutex_lock libSystem.B.dylib
Dx0209c234 GLEngine
CFArrayGetFirstIndexO0fValue CoreFoundation
Dx0Z2077ced GLEngine

rand libSystem.B.dylib

Dx0207d74cC GLEngine

—— e B

:sE'_.I.‘ﬁ

Address & Symbol Data Source
DxP0d44ed| UpdateSmoke_ScalarBose 188 fsubs fpl&, fpd, fpo Smoke.c:

dx000044ed| UpdateSmoke_ScalarBaose 189, fsubs fp29, fp5, fpl Smoke. c

2| 0xp00d44ed| UpdateSmoke_ScalarBasze 1891 fzubs fp3a, fp4, fpd Smoke. c
AxBO0d44ec| UpdateSmoke_ScalarBase 1994 fmuls fpZ,fpZ8, fpZ& Smoke. c
AxPO0044 10| UpdateSmoke_ScalarBose 198 fmadds fpl3, fp29, fp29,fp2 |Smoke.c
DxP00044f4| UpdateSmoke_ScalarBose 198 fmadds fpl2, fp3@, fp30, fplld |Smoke.c
OxP00044f 8| UpdateSmoke_ScalarBaose 191, fdivs fpll, fp23,fpl2 Smoke. c
AxBO0d44fc|UpdateSmoke_ScalarBase 1914 mullw r5,r6,r? Smoke.c
AxPO0045090| UpdatesSmoke_ScalarBose 192{ sub rd,rid,rs5 Smoke.c:
¢

€

(3

C

¢

c

G

* EBEIEIEICEEIEAE

DxBO004584 | UpdateSmoke_ScalarBose 192 cmpw rd,r29 Smoke.
Ax0004508 UpdoteSmoke_ScalarBose 1921 addi rZ23,rZ9, 1 Smoke.
OxP002458c| UpdateSmoke_ScalarBase 193} fmr fpil,fpll Smoke.
AxBO004510| UpdatesSmoke_ScalarBase 1931 fmr fpl,fplZ Smoke.
AxPO004514| UpdatesSmoke_ScalarBase 1944 Fmul fpl@, fp3l, fpZ4a Smoke.
DxPO004518| UpdateSmoke_ScalarBaose 1944 frsp fp3l, fpl@ Smoke.
@x0098451c|UpdateSmoke_ScalarBase 1944 bne 348 Smoke.
A AAAAARZA lindnteSmakes SralarRnzes 145 Fmul = frnil Fnil Fr27 Smnlks ~

= M

0o M (W [
* | EEIEIED

=

-
=

Interpret As Address Range

EAEAEIEIEIES

® Code C Ax20023dB0 to AxBDBD4658

o))}
Process: Flurry (50.0%) v Thread: Al Cranularity: Symbol ™

Config Cache Miss Profile (7450) Chart Start

CHUD.framework

* Write your own performance analysis tool

« Control .

Performance Monitor Counters

« Access S

pecial Purpose Registers (SPRs)

« Collect information about system hardware

« CPU

, Memory Controller, Bus

* [nstrument your source code around
critical sections

CHUD.framework Example

#include <CHUD/chud.h> void CHUDreport(void) {
- /* get counter data */
chudInitialize(); pmcCounts=chudGetEventCounts(chudCPUlDev,&ct);
printf(" CPU: PPC %d, %d MHz, Bus: %d /* output counter data */
MHz\n", for (1=0; i<ct; i++) {
chudProcessorType(), chudProcessorMHz(), ev = chudGetCounterEvent(chudCPUlDev, 1i);
chudBusFreq()/1000000) ; evstr = chudGetEventString(i, ev);

printf("\tPMC: %d\t\t%f\t%s\n",
- 1+1,pmcCounts[i],evstr)); }}
chudSetCounterEvent(chudCPUlDev, PMC_1, 1);
chudSetCounterEvent(chudCPUlDev, PMC_2, 2);

chudClearCounters();
chudStartCounters();

your_important_function();

chudStopCounters();

CHUDreport();

Setup and Gather Data Report Results .’

Other CHUD Tools

* Amber—instruction tracer
* Acid—filters traces for perf statistics
* SimG4—cycle accurate G4 (7400) simulator

* Reggie—examine and modify SPRs

Where to Get CHUD Tools

* Available on the web:
http://developer.apple.com/tools/debuggers.htmi

(Then click on CHUD Tools to download)

® Report any issues to:
chud-tools-feedback@group.apple.com

For More Information

* “Mac OS X: System Overview”
“Mac OS X: Performance”

on disk:
/Developer/Documentation/Essentials/

orderable in print from the web:
http:/developer.apple.com/techpubs/

* Apple Developer Connection tools page
http://developer.apple.com/tools/

* Bug Reporting
http://developer.apple.com/bugreporter/

Roadmap

906 Developing for Performance: Hall 2
Understand system performance concepts Fri., 9:00am
907 Compiler Developments at Apple: Room J
See the tools to optimize your application Fri., 10:30am
FF015 Development Tools: Room J1
Make your thoughts known Fri., 3:30pm
909 Debugging in Mac OS X: Hall 2
Learn about gdb and debugging techniques Fri., 5:00pm

Who to Contact

Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

Development Tools Engineering Feedback
macosx-tools-feedback@group.apple.com

CHUD-Tools Engineering Feedback
chud-tools-feedback@group.apple.com

http://developer.apple.com/wwdc2002/urls.html

Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

